Atrogin-1 promotes muscle homeostasis by regulating levels of endoplasmic reticulum chaperone BiP.

Avnika A. Ruparelia^{1,2,3*}, Margo Montandon¹, Jo Merriner¹, Cheng Huang⁴, Siew Fen Lisa Wong¹, Carmen Sonntag¹, Justin P. Hardee³, Gordon S. Lynch³, Lee B. Miles¹, Ashley Siegel¹, Thomas E. Hall⁵, Ralf B. Schittenhelm⁴ and Peter D. Currie^{1,6*}

¹ Australian Regenerative Medicine Institute, Monash University, Wellington Road, Clayton, VIC 3800, Australia.

² Department of Anatomy and Physiology, School of Biomedical Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria, 3010, Australia.

³ Centre for Muscle Research, Department of Anatomy and Physiology, University of Melbourne, Melbourne, Victoria, 3010, Australia

⁴ Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.

⁵ Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072 Australia.
⁶ EMBL Australia, Victorian Node, Level 1, 15 Innovation Walk, Monash University, Wellington Road, Clayton, VIC 3800, Australia.

*Co-corresponding authors

Contact for correspondence:

Dr Avnika Ruparelia

Centre for Muscle Research

Level 5W, Medical Building 181

University of Melbourne, Parkville VIC 3010, Australia

Tel: +61 3 8344 8786

avnika.ruparelia@unimelb.edu.au

Prof Peter D. Currie Australian Regenerative Medicine Institute. Level 1, 15 Innovation Walk Monash University, Wellington Road Clayton VIC 3800. Australia. Tel +61 3 99029602 peter.currie@monash.edu

Supplementary Figure 1: Atrogin-1 deficiency results in muscle fibre detachment. (A) Schematic of wildtype *atrogin-1* (*atrogin-1*^{+/+}) and mutant *atrogin-1* (*atrogin-1*^{pc44/44}) protein structure and mRNA sequence, with the mutant predicted to incorporate a premature stop in exon 5. The mutant was generated using Zinc Finger Nuclease technology, resulting in a 7 base pair deletion. (**B-D**) While muscle fibres span the entire length of the somite in *atrogin-1*^{+/+} wildtype larvae, *atrogin-1*^{+/pc44} and *atrogin-1*^{pc44/pc44} mutant larvae display muscle fibre detachment as seen by F-Actin labeling. (**E-F**) While Lifeact-GFP expressing cells in the *atrogin-1*^{-/-} mutant undergo disintegration, expression of Atrogin-1-GFP is sufficient to prevent fibre disintegration. (**G**) Quantification of number of intact and disintegrated cells following Lifeact-GFP or Atrogin-1-GFP expression - as determined using Fisher's exact test. ***p<0.001. All experiments performed in triplicates with the total number of fish examined in each replicate is documented in Supplementary Table 2.

Supplementary Figure 2: Abundance of ER stress markers. (A) qRT-PCR analysis showing no significant change in the expression of ER stress genes *bip*, *chop*, *atf6* and *atf4* comparing *atrogin-1*^{+/+} wildtype larvae and *atrogin-1*^{-/-} mutants – as determined using a one way ANOVA with Tukey's multiple correction post hoc test. Error bars represent +/- SEM. (B) Western blot for Myc and HA levels in whole cell lysates (input) and lysates following Myc immunoprecipitation (IP-Myc). While Myc-atrogin-1 was enriched in the Myc-atrogin-1 and Myc-atrogin-1 and BiP-HA transfected cells, indicating successful pulldown, no HA-tagged BiP was detected in any of the immunoprecipitated lysates (C) RT-PCR reveals that ER stress inducers Tunicamycin (Tm) or Thapsigargin (Tg) induced the expression of UPR genes *bip*, *chop*, *atf6* and *atf4*. (D-F) Muscle phenotypes in 6 dpf DMSO or HM03 treated *atrogin-1*^{-/-} mutants following incubation in methyl cellulose. (G) HM03 treatment resulted in a reduction in the number of fish displaying fibre disintegration as determined using Fisher's exact test. *p < 0.05. All experiments performed in triplicates with the total number of fish examined in each replicate is documented in Supplementary Table 2.

Supplementary Figure 3. Generation and validation of BiP deficient models. (A-B) Representative bright field image of a 6 dpf BiP crispant larvae display striking phenotypes including odema in the brain and heart with no adverse phenotypes seen in the uninjected control. (C) Schematic of muscle specific knockout strategy used. (D-E) Single slice confocal images showing striated ER-like BiP localization in control KalTA4 larvae displayed which is lost in BiP KO larvae following muscle specific mutagenesis of BiP. (F) Quantification of the proportion of control and BiP KO fish altered BiP protein localization. BiP KO fish show a significant increase in the number of fish displaying a loss in striations – as determined using Fisher's exact test. (G) Representative western blot images for BiP, and total protein direct blue stain, on whole cell protein lysates obtained from three independent biological replicates, each containing multiple control KalTA4 negative larvae or BiP KO larvae. (H) Quantification of BiP levels normalized to total protein with BiP KO larvae displaying a significant reduction compared to control – as determined using an unpaired t test. Error bars represent +/- SD. (I) Normalized average speed of 6 dpf control or BiP KO larvae - analysed using a one-way ANOVA with Sidak's multiple correction post hoc test. Error bars represent +/- SD. **p <0.01. All experiments performed in triplicates with the total number of fish examined in each replicate is documented in Supplementary Table 2.

Supplementary Figure 4: Mitochondrial inhibition results in muscle fibre detachment. (A) qRT-PCR analysis showing no significant change in the expression of mitochondrial genes *VDAC*, *ndufs3*, *ndufs6*, *cox4i1*, *cox5aa* and *atp6v1e1b* comparing *atrogin-1*^{+/+} wildtype larvae and *atrogin-1^{-/-}* mutants - as determined using a one way ANOVA with Tukey's multiple correction post hoc test. Error bars represent \pm SEM for three replicate experiments with each experiment comprising a pooled sample of at least 5 fish. No significant changes identified as determined using a two way ANOVA with Sidak's multiple correction post hoc test. (B) qRT-PCR analysis reveals a significant downregulation of mitochondrial fission genes drp1 and fis1 in *atrogin-1*^{-/-} mutants, as determined using an unpaired t test. Error bars represent \pm SEM for three replicate experiments with each experiment comprising a pooled sample of at least 5 fish. (C) qRT-PCR analysis reveals a significant downregulation of mitochondrial fusion genes *mfn1, mfn2 and opa1* in *atrogin-1*^{-/-} mutants, as determined using an unpaired t test. Error bars represent ±SEM for three replicate experiments with each experiment comprising a pooled sample of at least 5 fish. (D-E) Inhibition of complex 1 with Rotenone results in muscle fibre detachment following methyl cellulose incubation, which is not apparent in DMSO treated larvae – as seen using an F-Actin stain. (F) Graph showing the percentage of affected DMSO and Rotenone treated larvae with the latter having a significant increase in the proportion of fish displaying the muscle fibre detachment as determined using a Fisher's exact test. *p<0.05, ****p < 0.0001. All experiments performed in triplicates with the total number of fish examined in each replicate is documented in Supplementary Table 2.

Supplementary Figure 5. Overexpression of BiP results in altered mitochondrial function (A-C) BiP-mcherry localizes to the terminal cristae of the SR (arrows) - a structure directly adjacent to the Ryr1 labelled T-tubules, and more generally within the SR network (arrowheads). (**D**) qRT-PCR analysis showing a significant increase in levels of ER stress genes bip and atf4 in 2 dpf larvae injected with BiP-mCherry RNA compared to mCherry RNA injected fish - as determined using an unpaired t test. Error bars represent ±SEM for three replicate experiments with each experiment comprising a pooled sample of at least 5 fish (E) qRT-PCR analysis reveals a significant downregulation of mitochondrial fission genes drp1 and *fis1* in BiP-mCherry RNA injected larvae, as determined using an unpaired t test. Error bars represent ±SEM for three replicate experiments with each experiment comprising a pooled sample of at least 5 fish. (F) qRT-PCR analysis reveals a significant downregulation of mitochondrial fusion genes mfn1, mfn2 and opa1 in BiP-mCherry RNA injected larvae, as determined using an unpaired t test. Error bars represent ±SEM for three replicate experiments with each experiment comprising a pooled sample of at least 5 fish. p<0.05, p<0.01. All experiments performed in triplicates with the total number of fish examined in each replicate is documented in Supplementary Table 2.

Supplementary Figure 6. BiP inhibition has no effect on muscle integrity. (A) qRT-PCR analysis showing a significant increase in levels of ER stress genes *bip* and *atf6* in 6 dpf *dmd*^{-/-} mutants, as determined using an unpaired t test. Error bars represent \pm SEM for three replicate experiments with each experiment comprising a pooled sample of at least 5 fish (**B**-**C**) Live images of 6 dpf DMSO or HM03 treated *dmd*^{-/-} on the (Tg(*actc1b*:Lifeact-GFP);Tg(*actc1b*:CAAX-mCherry) background, whereby the actin filaments within the muscle fibres are labelled with GFP and membrane and t-tubules with mCherry. DMSO treated and HM03 treated mutants display similar severities in muscle fibre detachment. (**D**) Quantification of the number of fish displaying no muscle fibre detachment, mild or severe detachment phenotypes with no significant difference between DMSO and HM03 observed – as per chi squared test. All experiments performed in triplicates with the total number of fish examined in each replicate is documented in Supplementary Table 2.

Figure	Description	Test used	t/F value	degrees of freedom (df)	Multiple comparison	p values (adjuste d)
		One way ANOVA with Tukey's			atrogin-1+/+ vs atrogin-1+/-	0.811
1B	qPCR: atrogin- 1	multiple correction post hoc test	_	6	atrogin-1+/+ vs atrogin-1-/-	0.04
1D	3 dpf untreated	Chi squared test	0.7482	2	N/A	0.6879
1F	3 dpf methyl	Chi squared test	15.58	2	N/A	0.0004
1H	6 dpf untreated	Chi squared test	6.867	2	N/A	0.0323
1J	6 dpf methyl	Chi squared test	21.45	2	N/A	< 0.0001
3C	Western blot: BiP	Unpaired t test	2.171	10	N/A	0.0276
3G	Fibre integrity	Chi squared test	8.997	2	N/A	0.0111
3J	Muscle rescue	Fisher's exact test	N/A	N/A	N/A	0.0448
					Oxidative phosphorylation	2.05
					Oocyte meiosis	1.69
					Cell cycle	1.69
					Focal adhesion	1.32
					Ribosome	1.23
					Regulation of actin cytoskeleton	1.23
			N/A		Salmonella infection	1.22
					Tight junction	1.22
					Aminoacyl- tRNA biosynthesis	0 99
					Spliceosome	0.82
	VECCS				Tyrosine metabolism	0.79
4A	enrichment analyses	modEnrichr		N/A	Glycerolipid metabolism	0.37

Supplementary Table 1: Details of statistical tests used for each Figure.

					Arginine and proline metabolism	0.37
					PPAR signaling pathway	0.37
					Lysosome	0.37
	Western blot:	Unpaired t			atrogin-1+/+ vs	
4D	VDAC	test	2.484	10	atrogin-1-/-	0.0162
	Mitochondrial	Fisher's exact				
4G	dynamics	test	N/A	N/A	N/A	< 0.0001
4J	Basal respiration	Unpaired t test	2.232	40	atrogin-1+/+ vs atrogin-1-/-	0.0313
	Maximum	Unnaired t			atrogin_1+/+ vs	
4K	respiation	test	2.583	40	atrogin-1-/-	0.0136
	Mitochondrial	Chi squared		-	6	0.0100
5D	dynamics	test	10.92	2	N/A	0.0042
	BiP-mCherry -					
	mitochondrial	Fisher's exact			27/4	0.0004
5G	dynamics	test	N/A	N/A	N/A	< 0.0001
	Mitochondrial	Fisher's exect				
51	rescue	test	N/A	N/A	N/A	0.0002
		Two way	1.011	1.011		0.0002
		ANOVA with	0.2707		2 dpt - dmd +/+	0.0186
		Sidak's	0.3787		vs ana-/-	0.9160
	*** 11	multiple				
	Western blot:	correction	2 792	0	4 dpf - dmd+/+	0.0107
0B	BIP	post noc test	3.782	8	vs ama-/-	0.0107
					atrogin-1+/+ vs.	
					dmd-/-; atrogin-	
			7.945		1+/+	< 0.0001
					dmd+/+;	
					atrogin-1+/+ vs.	
			0.9(75		dmd+/+;	0.0272
			0.86/5		$\frac{\text{atrogin-1-/-}}{\frac{dmd+/+}{2}}$	0.9273
					$a = \frac{1}{2} + \frac{1}{2}$	
					dmd-/-: atrogin-	
			11.05		1-/-	< 0.0001
					dmd-/-; atrogin-	
		One way			$1 + v_{s}$.	
		ANOVA with	0.671		dmd+/+;	<0.0001
		Tukey's	9.671		atrogin-1-/-	<0.0001
	dmd	correction			1+/+ vs dmd-/-	
6G	birefringence	post hoc test	3.964	46	; atrogin-1-/-	0.0359

					dmd+/+;	
					atrogin-1-/- vs.	
					dmd-/-; atrogin-	
			12.92		1-/-	< 0.0001
					dmd+/+;	
					atrogin-1+/+ vs.	
					dmd-/-; atrogin-	
			6.329		1+/+	0.0002
					dmd+/+;	
					atrogin-1+/+ vs.	
					dmd+/+;	
			3.285		atrogin-1-/-	0.1022
					dmd+/+;	
					atrogin-1+/+ vs.	
					dmd-/-; atrogin-	
			10.1		1-/-	< 0.0001
					dmd-/-;	
					atrogin-1+/+ vs.	
					dmd+/+;	
			3.128		atrogin-1-/-	0.1297
					dmd-/-;	
					atrogin-1+/+ vs.	
		One way			dmd-/-; atrogin-	
		ANOVA with	3.948		1-/-	0.0331
		Tukev's			dmd+/+:	
		multiple			atrogin-1-/- vs.	
		correction			dmd-/-; atrogin-	
6H	dmd zebrabox	post hoc test	7.036	73	1-/-	< 0.0001
		•			CED des d //	
			11.60		GFP:unid+/+	<0.0001
			11.02			<0.0001
					GFP:ama+/+	
					vs. Atrogin-1-	
			1 0 1 1		IKES-	0.00(7
			1.011		GFP:dmd+/+	0.890/
					GFP:dmd+/+	
					vs. Atrogin-1-	
			0 517		IKES-	<0.0001
			8.317		GFP:dmd-/-	<0.0001
					GFP:dmd-/-	
		—			vs. Atrogin-1-	
		I wo way	11.05		IKES-	<0.0001
		ANOVA with	11.65		GFP:dmd+/+	<0.0001
		Sidak's			GFP:dmd-/-	
		multiple			vs. Atrogin-1-	
	Overexpression	correction		_	IRES-	
60	birefringence	post hoc test	3.526	87	GFP:dmd-/-	0.004

					Atrogin-1- IRES-	
					GFP:dmd+/+	
					IRES-	
			8.802		GFP:dmd-/-	< 0.0001
		Two way			dmd+/+; dmd-/-	
		ANOVA with	2.693		DMSO	0.0171
		multiple				
	HM03	correction			dmd+/+; dmd-/-	
7D	birefringence	post hoc test	4.759	81	HM03	< 0.0001
					DMSO:dmd+/+	
			6.31		DMSO:dmd-/-	0.0001
					DMSO:dmd+/+	
			2.812		VS. HM03:dmd+/+	0.1985
					DMSO:dmd+/+	
			1.477		/-	0.7239
					DMSO:dmd-/-	
			2 2 2 2		VS.	0.0000
			3.278		HM03:dmd+/+	0.0999
		Two wav			vs. HM03:dmd-	
		ANOVA with	4.985		/-	0.0034
		Sidak's				
	HM03	multiple			HM03:dmd+/+	
7E	zebrabox	post hoc test	1.443	114	vs. 111/105.dilld- /-	0.7377
	atrogin-1			-		,
Supp	overexpression	Fisher's exact				0.00.5
1A	rescue	test	N/A	N/A	N/A	0.0062
		ANOVA with	0.1517		bip	0.9998
		Tukey's	0.4586		chop	0.9854
		multiple	1.035		atf6	0.7814
Supp	qPCR: ER	correction	0 1274	16	atf1	>0.0000
ZA Supp	atrogin-1 +	Fisher's exact	0.12/4	10	all4	~0.7777
$\frac{2}{2}G$	HM03	test	N/A	N/A	N/A	0.0212
Supp	BiP	Fisher's exact				
3F	localization	test	N/A	N/A	N/A	0.0098
Supp	Western blot:	Unpaired t			Control vs BiP	
3G-H	BiP	test	3.119	4	KO	0.0356

Supp	BiP KO	Unpaired t			Control vs BiP	
31	zebrabox	test	1.045	70	KO	0.2996
			1.302		VDAC	0.7482
		Two way	1.006		ndufs3	0.9048
		ANOVA with	2.143		ndufs6	0.2294
		Sidak's	1.5		cox4i1	0.614
Supp	aPCR	correction	2.003		cox5aa	0.2953
4A	OXPHOS	post hoc test	1.355	24	atp6v1e1b	0.7134
						0.02823
	qPCR: mito		N/A	N/A	drp1	719
Supp	fission	Unpaired t				0.01793
4B	(atrogin-1)	test	N/A	N/A	fis1	509
						0.02472
			N/A	N/A	mfn1	485
					6.2	0.04296
Supp	qPCR: mito	Unnaired t	N/A	N/A	mīn2	338
4C	(atrogin-1)	test	N/A	N/A	opal	907
Supp	(Fisher's exact				
4F	Rotenone	test	N/A	N/A	N/A	
						0.04264
			0.1517		bıp	868
		One way	0.4586		chon	0.10234 815
		Tukev's	0.1500		Chop	0.35412
	qPCR: ER	multiple	1.035		atf6	295
Supp	stress (BiP-	correction				0.02683
5D	mCherry)	post hoc test	0.1274	16	atf4	237
	aPCP: mito		N/A	N/Λ	drn 1	0.03596
Supp	fission (BiP-	Unpaired t	11/71	11/17	dipi	0.03836
5E	mCherry)	test	N/A	N/A	fis1	627
						0.25627
			N/A	N/A	mfn1	879
	aDCD, mita		NI/A	NI/A	mfn?	0.00974
Supp	fussion (BiP-	Unpaired t	IN/A	IN/A	111112	0.01080
5F	mCherry)	test	N/A	N/A	opa1	308
			3.806		bip	0.010326
			2.091		chop	0.122125
Supp	aPCR · FR	Unnaired t	1.594		atf4	0.141933
6A	stress (dmd)	test	4.533	10	atf6	0.004341
Supp	,	Chi squared			DMSO vs	
6D	DMD drugs	test	3.686	2	HM03	0.1583

Supplementary Table 2: Sample numbers for each Figure.

Figure	Description	Number of independent replicates	Group	Total fish/fibre numbers
			atrogin-1+/+	>5 larvae/replicate
1B	aPCR: atrogin-1	3	atrogin-1+/pc43	>5 larvae/replicate
	4 ert megn i		atrogin- 1pc43/pc43	>5 larvae/replicate
			atrogin-1+/+	16
1C-D	3 dpf untreated	3	atrogin-1+/pc43	38
	1		atrogin- 1pc43/pc43	12
			atrogin-1+/+	17
1E-F	3 dpf methyl	3	atrogin-1+/pc43	52
			atrogin- 1pc43/pc43	23
			atrogin-1+/+	27
1G-H	6 dpf untreated	3	atrogin-1+/pc43	37
			atrogin- 1pc43/pc43	12
	6 dpf methyl	3	atrogin-1+/+	24
1 I- J			atrogin-1+/pc43	50
			atrogin- 1pc43/pc43	25
3 \	Proteomics	3	atrogin-1+/+	8-12 larvae/replicate
57	Troteonnes	5	atrogin-	8-12
			$\frac{1\text{pc43/pc43}}{\text{atrogin}_1 + / +}$	S larvae/replicate
3B-C	Western blot: BiP	6	atrogin- 1pc43/pc43	>5 larvae/replicate
			DMSO	19
3D-G	Fibre detachment	3	Tm	17
			Tg	19
	Muscle fibre		Control	18
3H-J	rescue	3	BiP KO	19
	Western blot:		atrogin-1+/+	>5 larvae/replicate
4C-D	VDAC	6	atrogin- 1pc43/pc43	>5 larvae/replicate
	Mitochondrial		atrogin-1+/+	57 fibres
4E-G	dynamics	3	atrogin- 1pc43/pc43	51 fibres

	Flectron		atrogin-1+/+	4 fish
4H-I	miscroscopy	3	atrogin- 1pc43/pc43	4 fish
	Mitochondrial		atrogin-1+/+	18 fish
4J-K	function	3	atrogin- 1pc43/pc43	24 fish
			DMSO	40 fibres
5A-C	Mitochondrial	3	Tm	46 fibres
	Gynamics		Tg	37 fibres
	BiP-mCherry -	_	mCherry	50 fibres
5E-G	dynamics	3	BiP-mCherry	76 fibres
5번_1	Mitochondrial	3	Control	89 fibres
J11-J	dynamics rescue	J	BiP KO	49 fibres
6 A D	Wastern blot: BiD	2	dmd+/+	>5 larvae/replicate
0A-D	western blot. Bir	J	dmdpc2/pc2	>5 larvae/replicate
	dmd birefringence	3	dmd+/+; atrogin- 1+/+	9
			dmdpc2/pc2; atrogin-1+/+	16
6C-G			dmd+/+; atrogin- 1pc43/pc43	12
			dmdpc2/pc2; atrogin- 1pc43/pc43	13
			dmd+/+; atrogin- 1+/+	18
	dmd zebrabox	6	dmdpc2/pc2; atrogin-1+/+	20
6Н			dmd+/+; atrogin- 1pc43/pc43	20
			dmdpc2/pc2; atrogin- 1pc43/pc43	19
			dmd+/+ + GFP	22
	Overeypression		dmd+/+ + IRES GFP	16
6K-O	birefringence	3	dmdpc2/pc2 + GFP	25
			dmdpc2/pc2 + IRES GFP	28
74 D	HM03	Λ	dmd+/+ + DMSO	19
/A-D	birefringence	4	dmd+/+ + HM03	18

			dmdpc2/pc2 + DMSO	23
			dmdpc2/pc2 + HM03	25
			dmd+/+ + DMSO	27
			dmd+/+ + HM03	26
7E	HM03 zebrabox	3	dmdpc2/pc2 + DMSO	34
			dmdpc2/pc2 + HM03	31
			atrogin-1+/+	6
Supp 1B-	atrogin-	1	atrogin-1+/pc44	16
D	Ipc44/pc44		atrogin- 1pc44/pc44	7
Supp 1E-	atrogin-1	1	Lifeact-GFP	90 lrvae
G	rescue	1	atrogin-1-GFP	22 larvae
Sunn 2A	aPCR · FR stress	3	atrogin-1+/+	>5 larvae/replicate
Supp 2/1	qi cit. Lit suces	5	atrogin-1+/pc43	>5 larvae/replicate
Supp 2D-	atropin $1 \pm HM02$	2	atrogin-1-/- + DMSO	44 larbae
G		5	atrogin-1-/- + HM03	36 larvae
Supp 2E	DiD localization	1	control	9
Supp 31	DIF IOCALIZATION	1	BiP KO	11
Supp 3G-	Wastern blat: DiD	2	control	>5 larvae/replicate
Н	western blot. Dir	5	BiP KO	>5 larvae/replicate
Supp 2I	DiDKO zahrahay	2	control	36 larvae
Supp 51	BIP KO Zeoradox	3	BiP KO	36 larvae
Supp 44-	qPCR: OXPHOS,		atrogin-1+/+	>5 larvae/replicate
C C	mito fission and fusion	3	atrogin- 1pc43/pc43	>5 larvae/replicate
Supp 4D-	Potonono	2	DMSO	46
F	Koteliolie	5	Rotenone	49
Supp 5D-	qPCR: OXPHOS,	2	mCherry	>5 larvae/replicate
F	fusion and	3	BiP-mCherry	>5 larvae/replicate
Supp 6A	aPCR · FR stress	6	dmd+/+	>5 larvae/replicate
	41 CIX. LIX 50035	0	dmdpc2/pc2	>5 larvae/replicate
Supp 5A-	DMD drugs	2	Control	578 fibres
C	Divid diugs	5	HM03	603 fibres

Primer	Sequence
atrogin-1	
gRNA 1	ggacaagactggcggtctcc
atrogin-1	
targetting	CTTggacaagactggcggtcGTCATGGCGTTTAAACCTTAATTAAGCTGTT
stop cassette	GTAGtccTGGTCAAAGCTGGGTTA
atrogin-	
genotyping	
F	getgegeaettttateatea
atrogin-	
1pc43/pc43	
genotyping	
r dmdpc2/pc2	
genotyping	
F	aatgcctgtaaacaaatgtgtctgt
dmdpc2/pc2	
genotyping	
K D'D DMA 1	
BIP gRNA I	
BIP gRNA 2	
aPCR F	ggaaagggttgtgcagaaag
atrogin-1	<u>888888.88</u>
qPCR R	ctgctgccactgcagtatgt
b-actin_F	GCATTGCTGACCGTATGCAG
b-actin_R	GATCCACATCTGCTGGAAGGTGG
GAPDH_F	AGCACTGTTCATGCCATCAC
GAPDH_R	GCTCAGGAATTACTTTGCCTACA
VDAC1_F	CATTGCAGCCAAATACCAAA
VDAC1_R	TCAAACTCCAGACCCAAACC
ndufs3_F	GCCTCCTTGGTCAGATTTGT
ndufs3_R	GGGAGAATCTCTGCGACGTA
ndufs6_F	CAGCAGTTCCAGTTCAGCAG
ndufs6_R	CCAGGTTGATTGCAAAGTTCT
cox4i1_F	TACGGCATTTCGTCTTGTTG
cox4i1_R	CCCAGGATCCCTTCTCTTC
cox5aa_F	ACGGATGAGGAGTTTGATGC
cox5aa_R	TGGCCAGATCGTCTAACCTC
atp6v1e1b_	
F atp6x1a1b	CAAIGAAAAAGCCGAGGAGA
R	GTCATCTCTGGCCTTCAGGA
bip gRT F	aagaggccgaagagaaggac

Supplementary Table 3: Sequences of primers used

bip_qRT_R	agcagcagagcctcgaaata
atf4_qRT_F	ttagcgattgctccgatagc
atf4_qRT_R	gctgcggttttattctgctc
atf6 qRT F	ctgtggtgaaacetecacet
atf6 qRT R	catggtgaccacaggagatg
chop_qRT_	
F	aaggaaagtgcaggagctga
chop_qRT_	
R	tcacgctctccacaagaaga
BiP gRNA 1	CCGCATCACTCCGTCATACG
BiP gRNA 2	CACAAACGGAGACACTCACC
drp1_F	AGCCAGTCAGGTGATCGCCGA
drp1_R	CGCAGGGTTCGCGTGAAGGG
fis1_F	AGATGGTTTAGTCGGCATGG
fis1_R	TCAGGCCTCCTTGTGTTTTT
mfn1_F	GACCGCATCTTCTTCGTCTC
mfn1_R	TGTGCTGCTCAAACTTGGTC
mfn2_F	AAAGCCAAACTGCTCAGGAA
mfn2_R	GGCGGAAAGAACAACGAATA
opa1_F	AGACTGGAAGCAGAGGTGGA
opa1_R	TTGCGCACTGTAGTGACCTC
mitoF1_pM	GGGGACAAGTTTGTACAAAAAAGCAGGCTGCCACCatgTCTGGAC
Е	TTCTGAGGGGACT
GFPstopR1	GGGGACCACTTTGTACAAGAAAGCTGGGTGttaCTTGTACAGCTCG
_pME	TCCATGC
pME_zAtro	GGGGACAAGTTTGTACAAAAAAGCAGGCTTCGgccaccATGCCGTT
gin1_F	TCTTGGACAAGACTGGC
pME_zAtro	GGGGACCACTTTGTACAAGAAAGCTGGGTCCGCTAAAACTTGAA
gin1 R	GAGGTTGATGAA